Linux进程管理
进程概述
1.当我们运行一个程序,那么我们将运行的程序叫进程。
PS1: 当程序运行为进程后,系统会为该进程分配内存,以及进程运行的身份和权限。
PS2: 在进程运行的过程中,系统会有各种指标来表示当前运行的状态。
2.程序和进程的区别
1.程序是数据和指令的集合,是一个静态的概念。比如/bin/ls、/bin/cp等二进制文件。同时程序可以长期存在系统中。
2.进程是程序运行的过程,是一个动态的概念。进程是存在生命周期的概念的,也就是说进程会随着程序的终止而销毁,不会永久存在系统中。
3.进程的生命周期
生命周期就是指一个对象的生老病死。
当父进程接收到任务调度时,会通过fock派生子进程来处理,那么子进程会继承父进程属性。
1.子进程在处理任务代码时,父进程会进入等待状态中...
2.子进程在处理任务代码后,会执行退出,然后唤醒父进程来回收子进程的资源。
3.如果子进程在处理任务过程中,父进程退出了,子进程没有退出,那么这些子进程就没有父进程来管理了,就变成僵尸进程。
PS: 每个进程都父进程的PPID,子进程则叫PID。
监控进程状态
查看进程的状态分为: 静态和动态两种方式
1.使用ps命令查看当前的进程状态(静态)
1)示例、ps -aux常用组合,查看进程 用户、PID、占用cpu百分比、占用内存百分比、状态、执行的命令等
状态 | 描述 |
---|---|
USER | 启动进程的用户 |
PID | 进程运行的ID号 |
%CPU | 进程占用CPU百分比 |
%MEM | 进程占用内存百分比 |
VSZ | 进程占用虚拟内存大小 (单位KB) |
RSS | 进程占用物理内存实际大小 (单位KB) |
TTY | 进程是由哪个终端运行启动的tty1、pts/0等 ?表示内核程序与终端无关 |
STAT | 进程运行过程中的状态 man ps (/STATE) |
START | 进程的启动时间 |
TIME | 进程占用 CPU 的总时间(为0表示还没超过秒) |
COMMAND | 程序的运行指令,[ 方括号 ] 属于内核态的进程。 没有 [ ] 的是用户态进程。 |
1.2.STAT状态
STAT基本状态 | 描述 | STAT状态+符号 | 描述 |
---|---|---|---|
R | 进程运行 | s | 进程是控制进程, Ss进程的领导者,父进程 |
S | 可中断睡眠 | < | 进程运行在高优先级上,S<优先级较高的进程 |
T | 进程被暂停 | N | 进程运行在低优先级上,SN优先级较低的进程 |
D | 不可中断睡眠 | + | 当前进程运行在前台,R+该表示进程在前台运行 |
Z | 僵尸进程 | l | 进程是多线程的,Sl表示进程是以线程方式运行 |
案例一、PS命令查看进程状态切换
#1.在终端1上运行vim [root@qmf ~]# vim qmf #2.在终端2上运行ps命令查看状态 [root@qmf ~]# ps aux|grep qmf #S表示睡眠模式,+表示前台运行 root 58118 0.4 0.2 151788 5320 pts/1 S+ 22:11 0:00 qmf root 58120 0.0 0.0 112720 996 pts/0 R+ 22:12 0:00 grep --color=auto qmf #在终端1上挂起vim命令,按下:ctrl+z #3.回到终端2再次运行ps命令查看状态 [root@qmf ~]# ps aux|grep qmf #T表示停止状态 root 58118 0.1 0.2 151788 5320 pts/1 T 22:11 0:00 vim qmf root 58125 0.0 0.0 112720 996 pts/0 R+ 22:12 0:00 grep --color=auto qmf
案例二、PS命令查看不可中断状态进程
#1.使用tar打包文件时,可以通过终端不断查看状态,由S+,R+变为D+ [root@qmf ~]# tar -czf etc.tar.gz /etc/ /usr/ /var/ [root@qmf ~]# ps aux|grep tar|grep -v grep root 58467 5.5 0.2 127924 5456 pts/1 R+ 22:22 0:04 tar -czf etc.tar.gz /etc/ [root@qmf ~]# ps aux|grep tar|grep -v grep root 58467 5.5 0.2 127088 4708 pts/1 S+ 22:22 0:03 tar -czf etc.tar.gz /etc/ [root@qmf ~]# ps aux|grep tar|grep -v grep root 58467 5.6 0.2 127232 4708 pts/1 D+ 22:22 0:03 tar -czf etc.tar.gz /etc/
2.使用top命令查看当前的进程状态(动态)
任务 | 含义 |
---|---|
Tasks: 129 total | 当然进程的总数 |
1 running | 正在运行的进程数 |
128 sleeping | 睡眠的进程数 |
0 stopped | 停止的进程数 |
0 zombie | 僵尸进程数 |
%Cpu(s): 0.7 us | 系统用户进程使用CPU百分比 |
0.7 sy | 内核中的进程占用CPU百分比,通常内核是于硬件进行交互 |
98.7 id | 空闲CPU的百分比 |
0.0 wa | CPU等待IO完成的时间 |
0.0 hi | 硬中断,占的CPU百分比 |
0.0 si | 软中断,占的CPU百分比 |
0.0 st | 比如虚拟机占用物理CPU的时间 |
2.1top 常见指令
字母 | 含义 |
---|---|
h | 查看帮出 |
1 | 数字1,显示所有CPU核心的负载 |
z | 以高亮显示数据 |
b | 高亮显示处于R状态的进程 |
M | 按内存使用百分比排序输出 |
P | 按CPU使用百分比排序输出 |
q | 退出top |
2.2.管理进程状态
停止进程,可以使用linux的kill命令对进程发送关闭信号。除了kill、还有killall,pkill
2.2.1.使用kill -l列出当前系统所支持的信号
数字编号 | 信号含义 | 信号翻译 |
---|---|---|
1 | SIGHUP | 通常用来重新加载配置文件 |
9 | SIGKILL | 强制杀死进程 |
15 | SIGTERM | 终止进程,默认kill使用该信号 |
2.2.2我们使用kill命令杀死指定PID的进程。
#1.给 vsftpd 进程发送信号 1,15 [root@qmf ~]# yum -y install vsftpd [root@qmf ~]# systemctl start vsftpd [root@qmf ~]# ps aux|grep vsftpd #2.发送重载信号,例如 vsftpd 的配置文件发生改变,希望重新加载 [root@qmf ~]# kill -1 9160 #3.发送停止信号,当然vsftpd 服务有停止的脚本 systemctl stop vsftpd [root@qmf ~]# kill 9160 #4.发送强制停止信号,当无法停止服务时,可强制终止信号 [root@qmf ~]# kill -9 9160
2.2.3Linux系统中的killall、pkill命令用于杀死指定名字的进程。可以使用kill命令杀死指定进程PID的进程,如果要找到需要杀死的进程,还需要在之前使用ps等命令再配合grep来查找进程,而killall、pkill把这两个过程合二为一,是一个很好用的命令。
#例1、通过服务名称杀掉进程 [root@qmf ~]# pkill nginx [root@qmf ~]# killall nginx #例2、使用pkill踢出从远程登录到本机的用户,终止pts/0上所有进程, 并且bash也结束(用户被强制退出) [root@qmf ~]# pkill -9 -t pts/0
3.管理后台进程
早期使用&符号将进程放入后台,然后在使用jobs、bg、fg等方式查看进程状态,但太麻烦了。推荐使用screen。
3.1.jobs、bg、fg的使用
[root@qmf ~]# sleep 3000 & #运行程序(时),让其在后台执行 [root@qmf ~]# sleep 4000 #^Z,将前台的程序挂起(暂停)到后台 [2]+ Stopped sleep 4000 [root@qmf ~]# ps aux |grep sleep [root@qmf ~]# jobs #查看后台作业 [1]- Running sleep 3000 & [2]+ Stopped sleep 4000 [root@qmf ~]# bg %2 #让作业 2 在后台运行 [root@qmf ~]# fg %1 #将作业 1 调回到前台 [root@qmf ~]# kill %1 #kill 1,终止 PID 为 1 的进程 [root@qmf ~]# (while :; do date; sleep 2; done) & #进程在后台运行,但输出依然在当前终端 [root@qmf ~]# (while :; do date; sleep 2; done) &>/dev/null &
3.2.screen的使用(强烈推荐,生产必用)
#1.安装 [root@qmf ~]# yum install screen -y #2.开启一个screen窗口,指定名称 [root@qmf ~]# screen -S wget_mysql #3.在screen窗口中执行任务即可 #4.平滑的退出screen,但不会终止screen中的任务。注意: 如果使用exit 才算真的关闭screen窗口 ctrl+a+d #5.查看当前正在运行的screen有哪些 [root@qmf ~]# screen -list There is a screen on: 22058.wget_mysql (Detached) 1 Socket in /var/run/screen/S-root. #6.进入正在运行的screen [root@qmf ~]# screen -r wget_mysql [root@qmf ~]# screen -r 22058
4.进程的优先级
4.1.优先级指的是优先享受资源
4.2.在启动进程时,为不同的进程使用不同的调度策略。
nice 值越高: 表示优先级越低,例如+19,该进程容易将CPU 使用量让给其他进程。
nice 值越低: 表示优先级越高,例如-20,该进程更不倾向于让出CPU。
4.3使用top或ps命令查看进程的优先级
#1.使用top可以查看nice优先级。 NI: 实际nice级别,默认是0。 PR: 显示nice值,-20映射到0,+19映射到39 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1083 root 20 0 298628 2808 1544 S 0.3 0.1 2:49.28 vmtoolsd 5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:+ #2.使用ps查看进程优先级 [root@m01 ~]# ps axo command,nice |grep sshd|grep -v grep /usr/sbin/sshd -D 0 sshd: root@pts/2 0
4.4nice指定程序的优先级。语法格式 nice -n 优先级数字 进程名称
#1.开启vim并且指定程序优先级为-5 [root@m01 ~]# nice -n -5 vim & [1] 98417 #2.查看该进程的优先级情况 [root@m01 ~]# ps axo pid,command,nice |grep 98417 98417 vim -5
4.5.renice命令修改一个正在运行的进程优先级。语法格式 renice -n 优先级数字 进程pid
#1.查看sshd进程当前的优先级状态 [root@m01 ~]# ps axo pid,command,nice |grep 折叠shd 70840 sshd: root@pts/2 0 98002 /usr/sbin/sshd -D 0 #2.调整sshd主进程的优先级 [root@m01 ~]# renice -n -20 98002 98002 (process ID) old priority 0, new priority -20 #3.调整之后记得退出终端 [root@m01 ~]# ps axo pid,command,nice |grep 折叠shd 70840 sshd: root@pts/2 0 98002 /usr/sbin/sshd -D -20 [root@m01 ~]# exit #4.当再次登陆sshd服务,会由主进程fork子进程(那么子进程会继承主进程的优先级) [root@m01 ~]# ps axo pid,command,nice |grep 折叠shd 98002 /usr/sbin/sshd -D -20 98122 sshd: root@pts/0 -20
5.系统平均负载
5.1平均负载是指单位时间内,系统处于可运行状态和不可中断状态的平均进程数,也就是单位时间内平均活跃进程数,
PS: 平均负载与 CPU 使用率并没有直接关系。
5.2.可运行状态和不可中断状态
1.可运行状态进程,是指正在使用 CPU 或者正在等待 CPU 的进程,也就是我们ps 命令看到处于 R 状态的进程。
2.不可中断进程,(你做什么事情的时候是不能打断的?) 系统中最常见的是等待硬件设备的 I/O 响应,也就是我们 ps 命令中看到的 D 状态(也称为 Disk Sleep)的进程。
例如: 当一个进程向磁盘读写数据时,为了保证数据的一致性,在得到磁盘回复前,它是不能被其他进程或者中断打断的,这个时候的进程就处于不可中断状态。如果此时的进程被打断了,就容易出现磁盘数据与进程数据不一致的问题。所以,不可中断状态实际上是系统对进程和硬件设备的一种保护机制。
5.3.那平均负载为多少时合理
最理想的状态是每个 CPU 上都刚好运行着一个进程,这样每个 CPU 都得到了充分利用。所以在评判平均负载时,首先你要知道系统有几个 CPU,这可以通过 top 命令获取,或grep 'model name' /proc/cpuinfo
例1、假设现在在 4、2、1核的CPU上,如果平均负载为 2 时,意味着什么呢?
Q1.在4 个 CPU 的系统上,意味着 CPU 有 50% 的空闲。
Q2.在2 个 CPU 的系统上,意味着所有的 CPU 都刚好被完全占用。
Q3.而1 个 CPU 的系统上,则意味着有一半的进程竞争不到 CPU。
1.如果 1 分钟、5 分钟、15 分钟的三个值基本相同,或者相差不大,那就说明系统负载很平稳。
2.但如果 1 分钟的值远小于 15 分钟的值,就说明系统最近 1 分钟的负载在减少,而过去 15 分钟内却有很大的负载。
3.反过来,如果 1 分钟的值远大于 15 分钟的值,就说明最近 1 分钟的负载在增加,这种增加有可能只是临时性的,也有可能还会持续上升,所以就需要持续观察。
PS: 一旦 1 分钟的平均负载接近或超过了 CPU 的个数,就意味着系统正在发生过载的问题,这时就得分析问题,并要想办法优化了
例子3、假设我们在有2个 CPU 系统上看到平均负载为 2.73,6.90,12.98
那么说明在过去1 分钟内,系统有 136% 的超载 (2.73/2=136%)
而在过去 5 分钟内,有 345% 的超载 (6.90/2=345%)
而在过去15 分钟内,有 649% 的超载,(12.98/2=649%)
但从整体趋势来看,系统的负载是在逐步的降低。
5.4.那么在实际生产环境中,平均负载多高时,需要我们重点关注
当平均负载高于 CPU 数量 70% 的时候,你就应该分析排查负载高的问题了。一旦负载过高,就可能导致进程响应变慢,进而影响服务的正常功能。
但 70% 这个数字并不是绝对的,最推荐的方法,还是把系统的平均负载监控起来,然后根据更多的历史数据,判断负载的变化趋势。当发现负载有明显升高趋势时,比如说负载翻倍了,你再去做分析和调查。
5.5.平均负载与 CPU 使用率有什么关系
在实际工作中,我们经常容易把平均负载和 CPU 使用率混淆,所以在这里,我也做一个区分。可能你会疑惑,既然平均负载代表的是活跃进程数,那平均负载高了,不就意味着 CPU 使用率高吗?
我们还是要回到平均负载的含义上来,平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。
而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:
CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;
I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;
大量等待 CPU 的进程调度也会导致平均负载升高,此时的 CPU 使用率也会比较高。
5.6.平均负载案例分析实战
下面,我们以三个示例分别来看这三种情况,并用 stress、mpstat、pidstat 等工具,找出平均负载升高的根源。
stress 是 Linux 系统压力测试工具,这里我们用作异常进程模拟平均负载升高的场景。
mpstat 是多核 CPU 性能分析工具,用来实时查看每个 CPU 的性能指标,以及所有 CPU 的平均指标。
pidstat 是一个常用的进程性能分析工具,用来实时查看进程的 CPU、内存、I/O 以及上下文切换等性能指标。
#如果出现无法使用mpstat、pidstat命令查看%wait指标建议更新下软件包
wget http://pagesperso-orange.fr/sebastien.godard/sysstat-11.7.3-1.x86_64.rpm
rpm -Uvh sysstat-11.7.3-1.x86_64.rpm
场景一:CPU 密集型进程
1.首先,我们在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:
[root@m01 ~]# stress --cpu 1 --timeout 600
2.接着,在第二个终端运行 uptime 查看平均负载的变化情况
# 使用watch -d 参数表示高亮显示变化的区域(注意负载会持续升高) [root@m01 ~]# watch -d uptime 17:27:44 up 2 days, 3:11, 3 users, load average: 1.10, 0.30, 0.17
3.最后,在第三个终端运行 mpstat 查看 CPU 使用率的变化情况
# -P ALL 表示监控所有 CPU,后面数字 5 表示间隔 5 秒后输出一组数据 [root@m01 ~]# mpstat -P ALL 5 Linux 3.10.0-957.1.3.el7.x86_64 (m01) 2019年04月29日 _x86_64_ (1 CPU) 17时32分03秒 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle 17时32分08秒 all 99.80 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17时32分08秒 0 99.80 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#单核CPU所以只有一个all和0
4.从终端二中可以看到,1 分钟的平均负载会慢慢增加到 1.00,而从终端三中还可以看到,正好有一个 CPU 的使用率为 100%,但它的 iowait 只有 0。这说明,平均负载的升高正是由于 CPU 使用率为 100% 。那么,到底是哪个进程导致了 CPU 使用率为 100% 呢?可以使用 pidstat 来查询
# 间隔 5 秒后输出一组数据 [root@m01 ~]# pidstat -u 5 1 Linux 3.10.0-957.1.3.el7.x86_64 (m01) 2019年04月29日 _x86_64_(1 CPU) 17时33分21秒 UID PID %usr %system %guest %CPU CPU Command 17时33分26秒 0 110019 98.80 0.00 0.00 98.80 0 stress
#从这里可以明显看到,stress 进程的 CPU 使用率为 100%。
场景二:I/O 密集型进程
1.首先还是运行 stress 命令,但这次模拟 I/O 压力,即不停地执行 sync
[root@m01 ~]# stress --io 1 --timeout 600s
2.然后在第二个终端运行 uptime 查看平均负载的变化情况:
[root@m01 ~]# watch -d uptime 18:43:51 up 2 days, 4:27, 3 users, load average: 1.12, 0.65, 0.00
3.最后第三个终端运行 mpstat 查看 CPU 使用率的变化情况:
# 显示所有 CPU 的指标,并在间隔 5 秒输出一组数据 [root@m01 ~]# mpstat -P ALL 5 Linux 3.10.0-693.2.2.el7.x86_64 (bgx.com) 2019年05月07日 _x86_64_ (1 CPU) 14时20分07秒 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle 14时20分12秒 all 0.20 0.00 82.45 17.35 0.00 0.00 0.00 0.00 0.00 0.00 14时20分12秒 0 0.20 0.00 82.45 17.35 0.00 0.00 0.00 0.00 0.00 0.00
#会发现cpu的与内核打交道的sys占用非常高
4.那么到底是哪个进程,导致 iowait 这么高呢?我们还是用 pidstat 来查询
# 间隔 5 秒后输出一组数据,-u 表示 CPU 指标 [root@m01 ~]# pidstat -u 5 1 Linux 3.10.0-957.1.3.el7.x86_64 (m01) 2019年04月29日 _x86_64_(1 CPU) 18时29分37秒 UID PID %usr %system %guest %wait %CPU CPU Command 18时29分42秒 0 127259 32.60 0.20 0.00 67.20 32.80 0 stress 18时29分42秒 0 127261 4.60 28.20 0.00 67.20 32.80 0 stress 18时29分42秒 0 127262 4.20 28.60 0.00 67.20 32.80 0 stress
#可以发现,还是 stress 进程导致的。
场景三:大量进程的场景
当系统中运行进程超出 CPU 运行能力时,就会出现等待 CPU 的进程。
1.首先,我们还是使用 stress,但这次模拟的是 4 个进程
[root@m01 ~]# stress -c 4 --timeout 600
2.由于系统只有 1 个 CPU,明显比 4 个进程要少得多,因而,系统的 CPU 处于严重过载状态
[root@m01 ~]# watch -d uptime 19:11:07 up 2 days, 4:45, 3 users, load average: 4.65, 2.65, 4.65
3.然后,再运行 pidstat 来看一下进程的情况:
# 间隔 5 秒后输出一组数据 [root@m01 ~]# pidstat -u 5 1 平均时间: UID PID %usr %system %guest %wait %CPU CPU Command 平均时间: 0 130290 24.55 0.00 0.00 75.25 24.55 - stress 平均时间: 0 130291 24.95 0.00 0.00 75.25 24.95 - stress 平均时间: 0 130292 24.95 0.00 0.00 75.25 24.95 - stress 平均时间: 0 130293 24.75 0.00 0.00 74.65 24.75 - stress
可以看出,4 个进程在争抢 1 个 CPU,每个进程等待 CPU 的时间(也就是代码块中的 %wait 列)高达 75%。这些超出 CPU 计算能力的进程,最终导致 CPU 过载。
分析完这三个案例,我再来归纳一下平均负载与CPU
平均负载提供了一个快速查看系统整体性能的手段,反映了整体的负载情况。但只看平均负载本身,我们并不能直接发现,到底是哪里出现了瓶颈。所以,在理解平均负载时,也要注意:
平均负载高有可能是 CPU 密集型进程导致的;
平均负载高并不一定代表 CPU 使用率高,还有可能是 I/O 更繁忙了;
当发现负载高的时候,你可以使用 mpstat、pidstat 等工具,辅助分析负载的来源